

An Underwater Python: Tortuga the
Python Powered Robot

Joseph Lisee

Introduction

Python Powered Robots?

● Python
● ~15,000 SLOC
● AI, GUI, Simulation,

High level control

● C++
● ~50,000 SLOC of C++
● "Real time" Control,

Vision, Framework

● Uses 10+ OSS
libraries for support

Above: Tortuga I at the AUVSI AUV
Competition in 2007

Robotics @ Maryland

Robotics @ Maryland
A highly self motivated group of students

who love to make robots

What Does Tortuga Do?

● Main Goal:

● Compete in (and occasionally
win!) the AUVSI International
AUV Competition

● Functionally:

● Not leak
● Drive around underwater
● See, detect & maneuver

around colored objectives
● Home in on sounds

● Research: undergraduate and
graduate at the SSL

Above: Tortuga II poised to grab the safe during
an autonomous testing run

How Does it Work?

Fancy float

Hydrophone (4) Forward and
Downward
cameras

Grabber

Thruster (6)

Pressure Vessel
 (Mac Mini, Batteries,
Custom electronics)

Modular 80/20
frame

What Does Tortuga it Really Do?

Videos!

file:///home/jlisee/Desktop/ram_videos/wusa.pls

Glory: The Postives

Competition Success

1st place in 2008, our second year

Benefits Using Python In Robotics

● Great flexibility and unit
testing support
● Allows more compact

code
● Creates greater code

reuse

● Easy to learn: helps to
get new members up to
speed

● Batteries and third party
libs speed development

Above: Testing at ~3AM July 23rd,
the night before shipping to
Tortuga II to the competition

Great Built In Unit Testing

● No 3rd party library to
install and manage

● Dynamic nature of python
allowed high unit test
code reuse

● Allowed refactoring as
code scope increases

● Gave us actual
confidence in our code (a
rare thing in robotics)

Above: Joe L., Steve M., and Mike L. sweat
bullets while testing at the competition

Trials & Tribulations:
The Negatives

C++ Integration Woes

● Boost.Python & Py++ are
powerful, but complex

● Overhead for such
wrappers is large in terms
of dependencies, disk
space, and compile time

● Small bugs and compiler
incompatibilities lead to
"fragile" bindings

Above: Spaghetti mess of wiring in Tortuga I,
similar to the elegance of our C++ integration

The GIL

● Inflexible nature
greatly constrains
concurrent system
design

● Forced the core of
our software into C++

● C++ calling back into
python is especially
likely to run afoul of
the GIL

Above: The polar opposite of the GIL,
Dave the judge, frustratingly flexible in his

interpretation of the rules

Software

Overall System Breakdown

Artificial (Semi)Intelligence

● Encoded in a pure
python state machine

● Blocks are states,
arrows are event
driven transitions

● Easy to adapt and
change after testing

● Release as the
StatePy on PyPi!

Above: Diagram of basic state
machine which seeks and hits a light

GUI & Simulator

Above: Sim & Control interface done in wxPython & Python-Ogre

System Buildout
● Reduces start-up on new

systems, a huge barrier
for new developers

● Relies on pre-built
dependencies for each
platform

● Minimal use of native OS
packages

● Places all files into a
single directory (usually
/opt/ram/local)

● Done with a single buildit
based program upon first
checkout

Above: Tortuga I at end of the 4 hour
assembly at the 2007 competition

Dependency Management
● R@M uses ~20 open source

tools and libraries

● SVN vendor branches
● All deps in source R@M tree

● Build and package each
dependency with builtit

● Manual upload to the server in
platform based file tree

● Dependence on target
platforms to be kept to a
minimum

● Makes OS upgrades easy
because you keep the same
version of almost all
dependencies

Above: Steve M. uses a screen-less
laptop to remotely use his keyboard-
less laptop to reprogram electronics

Conclusion
● Dynamic languages great fit for

dynamics problems

● Python let us develop more
functionality then a pure C++
would of

● Python let new developers
contribute faster

● Competitions and Robotics are
lots of fun, but so much more
work then normal software

Above: First successful test of our custom
electronics (before we fried them in the vehicle)

Thanks To These OSS Projects

OpenCV

libUSB libdc1394

Thanks To The R@M Sponsors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

